设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2
人气:166 ℃ 时间:2020-05-19 19:44:23
解答
令f(x)=(∫b a f(t)dt ) x^2 -(2∫b a 1dt)x +(∫b a 1/f(t)dt),则:f(x)=∫b a f(t) x^2 dt -2∫b a xdt +∫b a 1/f(t)dt=∫b a [f(t) x^2 -2x +1/f(t)]dt=∫b a {[f(t)^0.5 x -1/f(t)^0.5]^2}dt ≥0故这个关于x的...
推荐
- 设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx
- 设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
- 设f(x)在[a,b]上连续,且严格单增,证明:(a+b)∫(上b下a)f(x)dx
- 证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
- 设f(x)在[a,b]上连续,且f(x)>0,证明:至少存在一点ξ∈(a,b),使得∫f(x)dx=∫f(x)dx.(左式上、下限分别为ξ、a;右式上、下限分别为b、ξ)
- 信使rna上所有的碱基都参与和转运rna上的碱基配对吗
- 一块布第一次剪去全长的1/2,
- 怎样用生活中经历的一些事情,描述一下一年、一月、一日有多长?
猜你喜欢