设切点为(a,lna),切线为y=(x-a)/a+lna
s=∫[(x-a)/a+lna]dx|(2,6)-∫lnxdx|(2,6)
=x^2/2a-(1-lna)x-xlnx+∫x/xdx|(2,6)
=x^2/2a-(1-lna)x-xlnx+x|(2,6)
=-2/a+18/a-2lna+6lna+2ln2-6ln6
=16/a+4lna+2ln2-6ln6
对s(a)关于a求导,
s'=-16/a^2+4/a
令s'=0,
a=4
所以面积最小值为s(4)=4+4ln4+2ln2-6ln6=4+10ln2-6ln6=0.1809