1 |
x+1 |
当a>0时,f′(x)>0,
∴f(x)在(0,+∞)上是增函数;
当a<0时,由f′(x)>0得−1<x<−
1 |
a |
1 |
a |
∴函数f(x)在(−1,−
1 |
a |
1 |
a |
(Ⅱ)a=1时,f(x)=ln(x+1)+x
要证x∈[1,2]时,f(x)−3<
1 |
x |
即证明ln(x+1)+x-
1 |
x |
令g(x)=ln(x+1)+x-
1 |
x |
∵g(1)=0,
则g(x)≥0
∴x∈[1,2]时,f(x)−3<
1 |
x |
1 |
x |
1 |
x+1 |
1 |
a |
1 |
a |
1 |
a |
1 |
a |
1 |
x |
1 |
x |
1 |
x |
1 |
x |