某元件的寿命服从指数分布,平均寿命1000小时,求3个这样的元件使用了1000小时,至少已有一个损坏的概率.
人气:203 ℃ 时间:2020-04-13 02:25:07
解答
原件服从指数分布设参数为λ,则其概率密度函数为f(x)=λe^(-x) 分布函数为F(x)=1-e^(-λx)
其均值EX=1/λ=1000
于是参数λ=1/1000=0.001
某个原件使用在1000小时内损坏的概率即
P(X≤1000)
=F(1000)-F(0)
=1-e^(-0.001×1000) - (1-e^0)
=1-1/e
第二步求3个原件至少损坏1个的概率
3个原件相当于做了3次贝努力试验,n=3
每次损坏的概率为1-1/e p=1-1/e
至少损坏一个不容易求,转求逆事件--没有损坏 k=0
于是 3个原件都没损坏的概率
P(X=0)=p^k ×q^(n-k) =p^0 × (1-p)³=1×(1-(1-1/e))³=1/e³
于是所求3个原件至少损坏1个的概率
P(X≥1)=1-P(X=0)=1-1/e³
推荐
- 已知某种电子元件的寿命(单位:小时)服从指数分布,若它工作了900小时而未损坏的概率是e^(
- 某元件的寿命服从指数分布,平均寿命为a小时,求两个元件一共不足2a小时的概率
- 已知某批零件的寿命数据分布服从指数分布,当工作到20h时可靠度为0.9,求该批零件的平均失效率、故障概率
- 设某种电子元件的寿命T服从双参数的指数分布,其概率密度为f(t)=(1/θ)e^-(t-c)θ,t>=c,
- 设电子元件的使用寿命服从参数为1/2000的指数分布,求一个原件在使用了2500小时后,还能继续使用的概率
- 春风和煦的诗句
- 甲、乙两人在同一条路上前进,甲每小时5km,乙每小时行7km,甲于中午12点时经过A地,乙于下午2点经过A地,
- x:8=0.2::1/2过程啊啊啊啊啊啊啊啊啊啊啊
猜你喜欢