矩形ABCD的对角线AC,BD相交于点O,E,F,G,H,分别为OD、OA、OB、OC的中点.试说明:四边形EFGH是矩形
快
人气:492 ℃ 时间:2019-08-19 03:20:21
解答
证明:∵E是OA的中点,G是OC的中点,
∴OE= AO,OG= CO.
∵四边形ABCD是矩形,
∴AO=CO,∴OE=OG.
同理可证OF=OH.
∴四边形EFGH是平行四边形.
∵OE= AO,OG= OC,
∴EG=OE+OG= AC,同理FH= BD.
又∵AC=BD,∴EG=FH,
∴四边形EFGH是矩形.
推荐
- 矩形ABCD的对角线AC、BD相交与点O,E、F、G、H分别是OA、OB、OC、OD的中点求证四边形EFGH是矩形~
- 矩形ABCD的对角线AC.BD相交于点O.E.F.G.H分别是OA.OB.OB.OC.OD的中点,顺次连接E.F.G.H所得的四边形EFGH是矩形吗?请说明理由
- 已知:如图,矩形ABCD的对角线AC、BD交于点O,且E、F、G、H分别是OA、OB、OC、OD的中点,求证:四边形EFGH是矩形
- 如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F,G,H分别为OA,OB,OC,OD的中点求证:EFGH为平行四边形
- 如图,若四边形ABCD的对角线AC,BD相交于点o,且OA=OB=OC=OD=2分之根号2AB,则四边形ABCD是正方形吗?
- 仿写Water is to fish what air is to man
- 《新唐书 魏征传》太宗与魏征 译文
- advise的用法
猜你喜欢