若x+y+z=0且x,y,z互不相等.求x^2/(2x^2+yz)+y^2/(2y^+xz)+z^2/(2z^2+xy).在线等.
人气:177 ℃ 时间:2020-01-28 05:58:21
解答
假设x=0 y=1 z=-1
则:
x^2/(2x^2+yz)+y^2/(2y^+xz)+z^2/(2z^2+xy)
=0/(0-1)+1/(2-0)+(-1)²/(2+0)
=0+1/2+1/2
=1
推荐
- 若x+y+z=a,xy+yz+zx=b,xyz=c,则xy^2+x^2y+yz^2+y^2z+xz^2+x^2z=?
- x^2y-y^2z+xz^2-x^2z+xy^2+yz^2-2xyz
- x+y+z=2,xy+yz+xz=1.求x^2y^2z^2
- 若xy=x+y,yz=2y+2z,xz=3x+3z,求x,y,z.
- 化简(2x-y-z/x^2-xy-xz+yz)+(2y-x-z/y^2-xy-yz+xz)+(2x-x-y/z^2-xz-yz+xy)
- 下面句中标点符号分析有误的一项是( )
- Can the girls over there dance?回答.
- in China ,all the students work hard at school ___ going to university for higher education....
猜你喜欢