如何证明三角形三边上的高线交于一点
人气:476 ℃ 时间:2020-02-04 07:12:00
解答
证明:在ΔABC中,AC、AB上的高为BE和CF.
显然ΔABE∽ΔACF,故有AB/AC=AE/AF,即AF*AB=AE*AC (1)
过A作ΔABC的高AD,分别交BE,CF,AB于O1,O2,
由ΔAFO2∽ΔADB得:AF/AO2=AD/AB,即AF*AB=AO2*AD (2)
由ΔAEO1∽ΔADC得:AE/AO1=AD/AC,即AE*AC=AO1*AD (3)
根据等式(1)(2)(3)有
AO1*AD=AO2*AD,
∴AO1=AO2,O1、O2重合,记重合点为O点,则O点均在高AD,BE,CF上,
∴三角形ABC得三条高交于一点O.
推荐
猜你喜欢
- In order to encourage the students to study hard,the schoolmaster will give the scholarship to ______got the first prize
- 《醉花阴》中“人比黄花瘦”是千古流传的佳句,以花比人,其中的“瘦”字有什么作用
- 304287读作什么
- 一国两制的基本含义和基本内容?
- 判断1除一个数(0除外)的商,等于这个数的倒数
- 设A=a²+b²-c²,B=-4a²+2b²+3c²,并且A+B+C=0,求C
- 英语“一些;一点”的用法?就是那些短语后加什么 以及理解意思
- 就是关于”快乐假期,轻松阅读“写一篇作文,我不知道该写什么题材,谢