(1)设O为圆心,连接OA、OB,OC,BC,且OA与BC交于点D,如图所示:在△ABO和△ACO中,
|
∴△ABO≌△ACO (SSS),
又∵∠BAC=120°,
∴∠BAO=∠CAO=60°,又OA=OB,
∴△ABO是等边三角形,
∴AB=OA=
| 1 |
| 2 |
| 1 |
| 2 |
∴S扇形ABC=
120π×(
| ||
| 360 |
| π |
| 12 |
∴S阴影=π (
| 1 |
| 2 |
| π |
| 12 |
| π |
| 6 |
(2)弧BC的长l=
120•π•
| ||
| 180 |
| π |
| 3 |
设圆锥的底面半径为r,
∴
| π |
| 3 |
∴r=
| 1 |
| 6 |
∴圆锥底面圆的半径是
| 1 |
| 6 |

(1)设O为圆心,连接OA、OB,OC,BC,且OA与BC交于点D,如图所示:
|
| 1 |
| 2 |
| 1 |
| 2 |
120π×(
| ||
| 360 |
| π |
| 12 |
| 1 |
| 2 |
| π |
| 12 |
| π |
| 6 |
120•π•
| ||
| 180 |
| π |
| 3 |
| π |
| 3 |
| 1 |
| 6 |
| 1 |
| 6 |