> 数学 >
a为何值时y=ax^2与y=lnx相切?
人气:147 ℃ 时间:2020-08-05 14:39:58
解答
这两条曲线相切时,切点去的导数应相等,因而对两条曲线分别求导:
y=ax^2 求导得 y=2ax
y=lnx 求导得 y=1/x
切点处导数相等,所以
2ax=1/x 得
a=1/(2x^2)——(1)
又因为 曲线相切,必在切点处相交
则ax^2=lnx 将(1)式代入,消去a,
得x=e^0.5
将x的值带入(1)式,
可得a=1/2e.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版