xe^x为f(X)的一个原函数即f(x)=(xe^x)'=e^x+xe^x=(x+1)e^x所以原式=∫xdf(x)=xf(x)-∫f(x)dx=x(x+1)e^x-xe^x (0到1)=x²e^x (0到1)=e-0=e