1.tanx=2
=>sinx/cosx=2
=>sin²=4cos²x
=>sin²x=4/5,cos²x=1/5
=>sinxcosx>=2/5
=>sin2x=2sinxcosx=4/5
f(10sin2x)=f(8)=f(3)=-f(-3)=-1
2.题有问题,
y=2sin2x+w,这样的话是π/3
要不是y=2sin(2x+w)关于点(π/3,0)中心对称
这样是,π/3
3.3sinax²-4cosax+2=0
16cos²a-12sina≥0
16-16sin²a-12sina≥0
4sin²a+3sina-4≤0
(-3-√73)/8≤sina≤(-3+√73)/8
因为|sina|≤1
所以-1≤sina≤(-3+√73)/8
4.m²+2m=sinx
-1≤m²+2m≤1
-1-√2≤m≤-1+√2
再问: 第三题答案是-1≤sina≤0或0≤sina≤1/2
再答: 16cos²a-24sina≥0 16-16sin²a-24sina≥0 2sin²a+3sina-2≤0 (2sina-1)(sina+2)≤0 -2≤sina≤1/2 因为|sina|≤1 所以-1≤sina≤1/2
再问: 好厉害唉