令:Z=X-Y,
则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,
且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=
| 1 |
| 2 |
| 1 |
| 2 |
因此,Z=X-Y~N(0,1),
∴E|X-Y|=E|Z|=
| ∫ | +∞−∞ |
| 1 | ||
|
| z2 |
| 2 |
| 2 | ||
|
| ∫ | +∞0 |
| z2 |
| 2 |
| 4 | ||
|
| z2 |
| 2 |
| | | +∞0 |
|
又:D|X-Y|=D|Z|=E|Z|2-[E|Z|]2=EZ2-[E|Z|]2=DZ+[EZ]2-[E|Z|]2=1+0-[E|Z|]2=1-[E|Z|]2,
∴D|X−Y|=1−
| 2 |
| π |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ∫ | +∞−∞ |
| 1 | ||
|
| z2 |
| 2 |
| 2 | ||
|
| ∫ | +∞0 |
| z2 |
| 2 |
| 4 | ||
|
| z2 |
| 2 |
| | | +∞0 |
|
| 2 |
| π |