∴f(0)=c=0,
求导函数可得:f′(x)=3x2+2ax+b,
∵在x=1处的切线为直线y=−
1 |
2 |
∴f(1)=1+a+b=-
1 |
2 |
∴a=-
3 |
2 |
∴f(x)=x3-
3 |
2 |
(2)f(x)=x3-
3 |
2 |
令f′(x)>0,可得x<0或x>1;令f′(x)<0,可得0<x<1;
∴函数在(-∞,0),(1,+∞)上单调递增;在(0,1)上单调递减,
∴函数在x=0处取得极大值0,
令f(x)=x3-
3 |
2 |
3 |
2 |
∴0<m<
3 |
2 |
m≥
3 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |