设函数f(x)=x3+3x+1,若0≤θ≤Л/2时,不等式f(msinθ)+f(1-m)>2恒成立,则实数m的取值范围是
人气:132 ℃ 时间:2019-08-17 17:47:23
解答
∵f(x)=x3+3x+1,∴f(x)-1=x3+3x.
设g(x)=f(x)-1=x3+3x.∴g’(x)=3x^2+3>0,
则g(x)是递增的奇函数.
由f(msinθ)+f(1-m)>2,
∴f(msinθ)-1>1-f(1-m),即g(msinθ)>g(m-1)
∴msinθ>m-1,∴1>m(1-sinθ).
当θ=Л/2时,不等式恒成立.
当0≤θ<Л/2时,m<1/(1-sinθ),
∵1/(1-sinθ)的最小值为1,
∴m<1.
推荐
- 设函数f(x)=x^3 若0≤θ≤Л/2时,不等式f(msinθ)+f(1-m)>2恒成立,则实数m的取值范围是
- 设函数f(x)=-x^3+3x+2,若不等式f(3+2sinx)
- 设函数f(x)=|x-a|+3x,若不等式f(x)-f(x+m)≥-2对任意实数X均成立,求实数m取值范围?
- 已知实数x使不等式-1
- 函数f(x)=x3+x,x∈R,当0≤θ≤π2时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是( ) A.(0,1) B.(-∞,0) C.(−∞,12) D.(-∞,1)
- PFMEA,DOE,MSA,pPCA,8D,Poke
- 求焦距为10,渐近线方程为y=±1/2x的双曲线方程,用设λ方法
- 求函数的数学写法,怎么区分谁是谁的函数
猜你喜欢