已知正方体ABCD-A
1B
1C
1D
1中,求证:

(1)AC⊥平面B
1D
1DB;
(2)BD
1⊥平面ACB
1.
人气:222 ℃ 时间:2020-05-08 06:02:50
解答

证明:(1)正方体ABCD-A
1B
1C
1D
1中,B
1B⊥平面ABCD,AC⊂平面ABCD,
∴AC⊥BB
1,
又∵AC⊥BD,BD∩B
1B=B,
∴AC⊥平面B
1D
1DB;
(2)∵AC⊥平面BDD
1B
1,
又BD
1⊂平面BDD
1B
1,
∴AC⊥BD
1,同理可证AB
1⊥BD
1,
∵AC与AB
1是平面ACB
1内的两条相交直线,
∴BD
1⊥平面ACB
1.
推荐
猜你喜欢