设空间两个单位向量向量OA=(m,n,0),向量OB=(0,n,p)与向量OC=(1,1,1)的夹角都等于π/4,
人气:334 ℃ 时间:2020-10-01 10:30:29
解答
|OA|=1
=> m^2+n^2 = 1(1)
OA.OC = |OA||OC|cos(π/4)
(m,n,0).(1,1,1) = 1. √3 ( √2/2)
m+n = √6/2(2)
sub (2) into (1)
m^2 +(√6/2-m)^2 =1
4m^2 - 2√6m + 1 =0
m = (√6 +√2)/4 or(√6 -√2)/4
when m= (√6 +√2)/4 , n= (√6 -√2)/4
when m= (√6 -√2)/4 , n= (√6 +√2)/4
OA = ((√6 +√2)/4 , (√6 -√2)/4, 0)or((√6 -√2)/4 ,(√6 +√2)/4,0)
Similarly,
OB.OC = |OB||OC|cos(π/4)
(0,n,p). (1,1,1) = 1. √3 (√2/2)
n+p = √6/2
p =√6/2 - n
when n = (√6 -√2)/4, p=(√6 +√2)/4
when n = (√6 +√2)/4, p=(√6 -√2)/4
OB =(0, (√6 -√2)/4, (√6 +√2)/4) or(0, (√6 +√2)/4, (√6 -√2)/4)
推荐
- 设空间两个单位向量OA=(m,n,0),OB=(0,n,p)与向量OC=(1,1,1)的夹角都等于π/4,求cos角aob的值
- 设空间两个单位向量OA=(m,n,0),OB=(0,n,p)与向量OC=(1,1,1)的夹角都等于π/4,求cos角AOB
- 已知向量OA=(3,-4),OB=(6,-3),OC=(5-m,-3-m),若点A.B.C能构成三角形
- 若O,A,B,C为空间的四个点,且向量OA,向量OB,向量OC为空间的一个基底,则( ) A:O,A,B,C四点共线 B:O,A,B,C四点共面,但不共线 C:O,A,B,C四点中存在三点共线 D:O,A,B,C四点不共面
- 已知点M在平面abc内,并且对空间任意一点O,x向量OA+1/2向量OB+1/3向量OC=向量OM.求X的值?
- 求一篇英语作文,最好是原创,the positive and negative impacts of tourism,300字左右~
- 童心向党——做一个有道德的人 这篇作文怎么写?
- 若(sina)^2+2(sinb)^2=2cosx 求(sina)^2+(sinb)^2的最大值和最小值?
猜你喜欢