解方程组
|
得
|
∴C点坐标为(2,2);
根据图示知,当x>2时,y1>y2;
(2)如图,过C作CD⊥x轴于点D,
则D(2,0),
![](http://hiphotos.baidu.com/zhidao/pic/item/7acb0a46f21fbe093f1918a568600c338744ad38.jpg)
∵直线y2=-2x+6与x轴交于B点,
∴B(3,0),
①当0<x≤2,此时直线m左侧部分是△P′Q′O,
∵P′(x,0),
∴OP′=x,
而Q′在直线y1=x上,
∴P′Q′=x,
∴s=
1 |
2 |
②当2<x<3,此时直线m左侧部分是四边形OPQC,
∵P(x,0),
∴OP=x,
∴PB=3-x,
而Q在直线y2=-2x+6上,
∴PQ=-2x+6,
∴S=S△BOC-S△PBQ=
1 |
2 |
1 |
2 |
=-x2+6x-6(2<x<3);
(3)直线m平分△BOC的面积,
则点P只能在线段OD,即0<x<2.
又∵△COB的面积等于3,
故
1 |
2 |
1 |
2 |
解之得x=
3 |
∴当x=
3 |