若函数f(x)在R上是增函数,对于实数a、b,若a+b>0,则有( )
A.f(a)+f(b)>f(-a)+f(-b)
B.f(a)+f(b)f(-a)-f(-b)
D.f(a)-f(b)
人气:358 ℃ 时间:2019-11-15 07:28:14
解答
观察到a>-b.可以推出-a<b.
根据增函数的性质,可以知道:f(a)>f(-b) f(-a)<f(b)
利用不等式性质,可以知道:f(a)-f(-a)>f(-b)-f(b).
移向得到A选项了.
推荐
- 若函数f(x)=a/x-b/+2在区间(0,+无穷)上为增函数,则实数a,b的取值范围是
- 已知函数f(x)在R上是增函数,且实数a,b满足a+b≥0.求证:f(a)+f(b)≥f(-a)+f(-b).
- 已知f(x)在R上是增函数,对任意实数x,都有f(x)0,试比较f(a)+f(b)与f(-a)+f(-b)以及f(a)*f(b)与f(-a)*f(-b)
- 若函数f(x)=a|x-b|+2在[0,+∞)上为增函数,则实数a、b的取值范围是_.
- a是实数,f(x)=a−2/2x+1(x∈R),用定义证明:对于任意a,f(x)在R上为增函数.
- 数列2,3,8,29,()
- He will have his car repaired next week.求翻译
- 设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则( ) A.a>-3 B.a<-3 C.a>-13 D.a<-13
猜你喜欢