> 数学 >
已知函数f(x)=x2+1,且g(x)=f[f(x)],G(x)=g(x)-λf(x),试问,是否存在实数λ,使得G(x)在(-∞,-1]上为减函数,并且在(-1,0)上为增函数.
人气:195 ℃ 时间:2020-09-05 02:45:30
解答
g(x)=f[f(x)]=f(x2+1)=(x2+1)2+1=x4+2x2+2.G(x)=g(x)-λf(x)=x4+2x2+2-λx2-λ=x4+(2-λ)x2+(2-λ),G(x1)-G(x2)=[x14+(2-λ)x12+(2-λ)]-[x24+(2-λ)x22+(2-λ)]=(x1+x2)(x1-x2...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版