设f(x)在[a,b]上连续且f(x)>0,又F(x)=∫(a,x)f(t)dt+f(x,b)(1/f(t))dt证明:方程F(x)=0在(a,b)内有且仅有一个根.
人气:302 ℃ 时间:2019-12-15 06:54:34
解答
貌似这题有问题,看了下把“F(x)=∫(a,x)f(t)dt+f(x,b)(1/f(t))dt"中的“+”正号改成"-"利用零值定理可以解出来.还有一个证明是F'(x)≧2不这样改貌似做不出来.
推荐
- 函数f(x)>0在[a,b]上连续,令F(x)=∫(0到x)f(t)dt+∫(0到x)1/f(t)dt,证明方程F(x)=0在(a,b)内有且仅有一
- 设f(x)=x^2,0≤x
- 设f(x)为连续函数,证明:∫下0上x f(t)(x-t)dt=∫下0上x(∫下0上t f(u)du)dt
- 解方程 dx/dt=f(x),x(0)=0,f(x)=x*sin(1/x).f(0)=0.证明此方程只有一解 且为 x=0..
- 设当x>0时,f(x)可导,且满足方程f(x)=1+1/x ∫f(t)dt{上限x下限1},求f(x)
- 平行四边形的一条对角线与一边垂直,一个内角是60°,周长是34cm,则这个平行四边形的一组邻边分别是?
- 小学四年级上册语文知识与能力训练第48页的最后一题.
- 冰冻三尺,非一日之寒的寓意
猜你喜欢