π |
2 |
设另一走廊的宽为y,∵AB=
a |
cosθ |
a |
cosθ |
asinθ |
cosθ |
π |
2 |
依题意必存在一个适当的0值使y最小.
由y′(θ)=8acosθ−
asin2θ+acos2θ |
cos2θ |
a |
cos2θ |
令y'=0得cos3θ=
1 |
8 |
1 |
2 |
π |
3 |
当cosθ<
1 |
2 |
1 |
2 |
∴当cosθ=
1 |
2 |
π |
3 |
3 |
3 |
π |
2 |
a |
cosθ |
a |
cosθ |
asinθ |
cosθ |
π |
2 |
asin2θ+acos2θ |
cos2θ |
a |
cos2θ |
1 |
8 |
1 |
2 |
π |
3 |
1 |
2 |
1 |
2 |
1 |
2 |
π |
3 |
3 |
3 |