若点F1,F2为椭圆(x^2/4)+y^2=1的焦点,P为椭圆上的点,当△F1PF2的面积为1时,向量PF1•向量PF2的值为?
人气:115 ℃ 时间:2019-09-08 23:44:57
解答
椭圆:(x²/4)+(y²/1)=1
a²=4,b²=1,c²=3
a=2,b=1,c=√3
∴F1(-√3,0),F2(√3,0)
∴|F1F2|=2√3
由三角形F1PF2的面积为1
1=[(2√3)h]/2
h=(√3)/3
又结合(x²/4)+h²=1
可得:x=±(2√6)/3
∴点P的坐标为(±(2√6)/3,±√3/3)
∵{[(2√6)/3]-(-√3)}×{(√3)-[(2√6)/3]}=1/3=[(√3)/3]²
∴由射影定理可知
∠F1PF2=90º
∴PF1*PF2=0
推荐
- P为椭圆x²/25+y²/16=1上一点,F1、F2为左右焦点,若∠F1PF2=60°,求|PF1|•|PF2|的值
- 设F1,F2分别是椭圆x^2/4+y^2=1的左右焦点.若点p是该椭圆上的一个懂点,求向量PF1*向量PF2的最大和最小值
- F1、F2分别是椭圆x^2/4+y^2=1的左右焦点.若P是椭圆上的一个动点,求:向量PF1×向量PF2的最值
- 设F1,F2为椭圆x^2/4+y^2=1上的两焦点,P在椭圆上,当△F1PF2的面积为1时,向量PF1·向量PF2=?
- 已知F1、F2是椭圆C:x^2/a^2+y^2/b^2=1的两个焦点,P为C上一点,且向量PF1与向量PF2的积为0.
- 空气污染怎么治理呢
- 《道德经》读后感 2000字
- a b为正实数1/a+1/b 与1/a+b大小关系及解析
猜你喜欢