已知a,b,c∈R,a^2 b^2 c^2=1.求证|a b c|≤√3
已知a,b,c∈R,a^2+b^2+c^2=1.求证|a+b+c|≤√3
人气:453 ℃ 时间:2020-06-13 11:57:45
解答
因为a^2+b^2>=2ab 注:由(a-b)^2>=0得到
同理b^2+c^2>=2bc
a^2+c^2>=2ac
要证|a+b+c|≤√3 即证 (a+b+c)^2≤3
(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc = 1+2ab+2ac+2bc ≤ 1+(a^2+b^2)+(b^2+c^2)+(a^2+c^2)=
1+2(a^2+b^2+c^2)=3
所以(a+b+c)^2≤3 所以得证,当且仅当a=b=c时取等号
推荐
- 已知a+b+c=1,求证a方+b方+c方≥1/3
- 已知:a,b,c∈(0,+∞),且a+b+c=1.求证:⑴a^2+b^2+c^2≥1/3;(2)√a+√b+√c≤√3
- 已知3(a^2+b^2+c^2)=(a+b+c)^2,求证a=b=c
- 已知a+b+c=1,求证:(a/1+b+c)+(b/1+a+c)+(c/1+a+b)≥3/5
- 已知a^2+b^2+c^2=3,求证:1/(a^2+a+1)+1/(b^2+b+1)+1/(c^2+c+1)≥1
- 社会主义现代化建设取得巨大成就,如:,取得这些成就的根本原因是 .
- 欧亨利的 最后一片叶子
- three out of是什么意思?
猜你喜欢