将7个不同的小球全部放入编号为2和3的两个小盒子里,使得每个盒子里的球的个数不小于盒子的编号,则不同的放球方法共有______种(用数字作答).
人气:203 ℃ 时间:2019-09-18 04:19:16
解答
根据题意,每个盒子里的球的个数不小于该盒子的编号,
分析可得,可得2号盒子至少放2个,最多放4个小球,分情况讨论:
①2号盒子中放2个球,其余5个放入3号盒子,有C72=21种方法;
②2号盒子中放3个球,其余4个放入3号盒子,有C73=35种方法;
③2号盒子中放4个球,其余3个放入3号盒子,有C74=35种方法;
则不同的放球方法有21+35+35=91种,
故答案为:91.
推荐
- 将编号为1,2,3,4,5 的小球放入编号1,2,3,4,5 的五个盒子中 .球的编号与盒子的编号不同.有几种放法?
- 把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数.则有多少种不同的方法
- 把20个相同的小球放入编号为1,2,3的三个盒子里,要求每个盒子里球的数目不小于盒子的编号数,则一共有_种不同的放法.
- 编号为1,2,3,4,5,6,7,8,9,10的10个球放入标号为1,2,3,4,5,6,7,8,9,10的10个盒子内,每个盒子内放一个球,则恰好有3个球的标号与所在的标号不一致的放入方法共有多少种
- 把20个相同的小球放入编号为1,2,3的三个盒子里,要求每个盒子里球的数目不小于盒子的编号数,则一共有_种不同的放法.
- 秦朝和隋朝有什么共同点
- 有关特殊疑问句的陈述语序
- 有关勾股定理的几道题,
猜你喜欢