设A(0,a)是y轴上的一个定点,求A到抛物线x^2=4y上的点的最短距离.
人气:298 ℃ 时间:2019-10-18 22:51:38
解答
设P(x,y)为抛物线上任意一点,则PA^2=(y-a)^2+x^2=y^2-2ay+a^2+4y=(y-(a-2))^2+a^2-(a-2)^2=(y-(a-2))^2+4a-4由于y>=0因此当a-2>=0即a>=2时,当y=a-2,时PA^2有最小值4a-4此时最短距离为根号(4a-4)当a-2...
推荐
猜你喜欢
- 有关基因工程的基本工具的几个简答题.
- (1)在微风中,在阳光下,燕子斜着身子在天空中掠过,“唧”的一声,已由这边的稻田上,飞到那边的柳树下了;还有几只横掠过湖面,剪尾或翼尖偶尔沾了一下水面,那小圆晕便一圈一圈地荡漾开去.这一段描写了小燕子活泼机灵的特点.
- 正五边形能不能密铺、正八边形呢?
- 一个圆形舞台,直径是20米,它的周长是多少米?如果在舞台上铺设每平方米80元的木板,至少需要多少元?
- 10-20毫克/千克的赤霉素+0.3%的尿素是什么意思
- 当铝原子变成离子 那么它的核电荷数是多少
- 反法西斯战争的有哪些国家
- 当√2-x有意义时,化简√x2-4x+4-√x2-6x+9的结果