> 数学 >
在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN⊥侧面PBC,则此棱锥截面与底面所成的二面角正弦值是___.
人气:130 ℃ 时间:2019-08-20 00:35:47
解答
取MN和BC的中点分别为E,F,
∵M,N分别是PB,PC的中点,
∴MN∥BC
∵MN⊂截面AMN
∴BC∥截面AMN
设截面AMN∩平面ABC=l
∴BC∥l
∵E,F分别为MN和BC的中点
∴AE⊥MN,AF⊥BC
∴∠EAF为所作的二面角的平面角,
设AB=a,∵截面AMN⊥侧面PBC,∴侧棱PA=PB=PC=
3
2
a
,∴PF=
2
2
a
,∴EF=
2
4
a

在直角△AEF中,AF=
3
2
a
,EF=
2
4
a

sin∠EAF=
6
6

故答案为:
6
6
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版