P是三角形ABC所在平面外一点,PA PB PC两两互相垂直,三角形PAB,三角形PBC,三角形PAC的面积分别是s1 S2 S3,三角形的面积为S,求证S的平方=S1 S2 S3的平方和
人气:333 ℃ 时间:2019-11-04 15:33:15
解答
设PA =a,PB= b,PC =c,
则(s1)^2 +(s2)^2 +(s3)^2 = (1/4)[(a^2)(b^2) +(b^2)(c^2) +(c^2)(a^2)] (2)
AB ^2 = a^2 + b^2,BC^2 = b^2 + c^2,CA^2 = c^2 + a^2 (勾股定理)
由余弦定理:cos角BAC = [AB^2 + AC^2 - BC^2]/[2*AB*AC ]=(a^2)/根号[(a^2 +b^2)(a^2 +c^2)]
sin角BAC ={根号[ (a^2 +b^2)(a^2 +c^2)-a^4)] }/ 根号[(a^2 +b^2)(a^2 +c^2)]
= {根号[ (a^2)(b^2) +(b^2)(c^2) +(c^2)(a^2)]} / 根号[(a^2 +b^2)(a^2 +c^2)]
三角形ABC的面积S = (1/2)AB* AC*sin角BAC
S^2 = (1/4) [(a^2 +b^2)(a^2 +c^2)]*[sin角BAC]^2
=(1/4)[ (a^2)(b^2) +(b^2)(c^2) +(c^2)(a^2)] (2)
比较(1)(2),知:S^2 =(s1)^2 +(s2)^2 +(s3)^2.
命题得到证明.
推荐
- 如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点. (1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB
- P是三角形ABC内一点,且 向量PA+2向量PB+3向量PC=零向量 则三角形PBC,三角形PAC,三角形AB的面积之比为多少
- 如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点. (1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB
- P是△ABC所在平面外一点,A′、B′、C′分别是△PBC、△PCA、△PAB的重心, (1)求证:平面A′B′C′∥平面ABC; (2)求S△A′B′C′:S△ABC.
- 已知三角形ABC中,角ABC=90,P为三角形ABC所在平面外一点,PA=PB=PC,求证平面PAC垂直平面ABC.
- 一百颗豆,分六个碗装,只能装单数,怎么装?
- 某一动物化石碳-14的含量是新鲜植物的六十四分之一,请你推测该生物生存的年代距今有多少年?
- 已知点M(-2,4)及焦点为F的抛物线y=1\8x2,在此抛物线上求一点P,使|PM|+|PF|的值最小
猜你喜欢