设Sn是等差数列{an}的前n项和,已知1/3S3与1/4S4的等比中项为1/5S5,1/3S3与1/4S4的等差中项为1.
设Sn是等差数列{an}的前n项和,已知1/3S3与1/4S4的等比中项为1/5S5,1/3S3与1/4S4的等差中项为1,求等差数列{an}的通项an
人气:191 ℃ 时间:2020-10-01 20:56:55
解答
Sn=na1 + [n(n-1)d]/2
1/3S3=1/3{3a1 + [3×(3-1)]d/2} = 1/3(3a1 + 3d)= a1 + d
1/4S4=1/4{4a1 + [4×(4-1)]d/2} = 1/4(4a1 + 6d)= a1 + 3d/2
1/5S5=1/5{5a1 + [5×(5-1)]d/2} = 1/5(5a1 + 10d)= a1 + 2d
1/3S3与1/4S4的等比中项为1/5S5,
(a1 + 2d)^2 =(a1 + d)×(a1 + 3d/2)
3a1d/2 + 5d^2/2 = 0 .(1)
1/3S3与1/4S4的等差中项为1,
(a1 + d)+(a1 + 3d/2)=2×1
a1 + 5d/4 = 1.(2)
(1),(2)两式联立,解得:d=0或d=-12/5
当d=0时,代入(2)中,a1=1 ,an=1
当d=-12/5时,代入(2)中,a1=4 ,an=32/5 - 12n/5
推荐
- 设Sn是等差数列{an}的前n项和,已知1/3S3,1/4S4的等比中项为1/5S5,1/5S5与1/4S4的等差中项为1,求an
- 已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1)在直线y=x+2上,:设Cn=an+bn,求数列{cn}的前n项和Tn
- 设Sn是等差数列an的前n项和,已知1/3S3与1/4S4的等比中项为1/5S5,1/3S3与1/4S4的等差中项为1,求an
- 等比数列{an},前n项和为Sn,若S1,2S2,3S3成等差数列,求{an}的公比
- 等比数列an的前n项和为sn,已知s1,2s2,3s3成等差数列,求an的公比
- 糖蛋白受体蛋白,载体蛋白的不同
- 10x²+30x+20约分 怎么会变成10(x+1)(x+2) x³+2x²-x-2约分怎么变成(x+2)(x+1) (x-1)
- x-3/8x+110=75%+10
猜你喜欢