求函数sin^4 x+cos^4 x-2cos2x的周期
那最小值和最大值呢?
人气:494 ℃ 时间:2019-09-27 15:02:14
解答
sin^4 x+cos^4 x-2cos2x=(sin^2 x+cos^2 x)^2-2*sin^2x*cos^2x-2cos2x=1-(sin(2x)^2)/2-2*cos(2x)
=3/4+1/4*cos(4x)-2*cos(2x)
因为y=cos(4x)和y=cos(2x)的周期分别为pai/2和pai,且两周期比值为有理数,所以原函数的周期为pai/2和pai的最小公倍数pai.
求最值时,y=(1/2)*cos^2(2x)-2cos(2x)+1/2=(1/2)*(cos(2x)-2)^2-3/2,当cos2x=1时,y有最小值-1,当cos2x=-1时,y有最大值3.
推荐
猜你喜欢
- 他投进了一个球用英语怎么说
- 怎样促进班级团结(初一)
- 长方形的体积一定 底面积和高 说明理由 说明是什么比例
- 解关于x的不等式:ax-(a+1)x+1<0
- 四棱锥P-ABCD中,PA垂直于面ABCD,AB=4,BC=3,AD=5,角ABC=角DAB=90°,E为CD中点,
- 欲使含有少量水蒸气、氢气、CO、二氧化碳的氮气,可以使混合气体先通过足量的————,再通过————,最后通过浓——.
- 已知a=3m-2n,b=(x+1)m+8n,a≠0,若a平行b,求实数x
- 如图:在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.