抛物线y=ax²+bx+c(a≠0)的顶点为M,与x轴的交点为A,B(点B在A的右侧),△ABM的三个内角∠
抛物线y=ax²+bx+c(a≠0)的顶点为M,与x轴的交点为A,B(点B在A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m,a,b.若关于x的一元二次方程(m-a)x²+2bx+(m+a)=0有两个相等的实数根.
1、判断△ABM的形状并说明理由.
2、当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
3、若平行与x轴的直线与抛物线交于C,D两点,以CD为直径的圆恰好与x轴只有一个交点,求该圆的圆心坐标.
人气:284 ℃ 时间:2019-10-23 09:09:13
解答
1.(m-a)x²+2bx+(m+a)=0有两个相等的实数根.△=(2b)²-4(m-a)(m+a)=0.得到a²+b²=m²,所以三角形abm为直角三角形.且AM=BM,三角形为等腰直角三角形.2.顶点坐标为(-2,-1,)-b/2a=-2;(4ac-b^2...
推荐
- 抛物线y=-x2+2x+3与x轴交与A.B两点,与x轴交与C点,抛物线的顶点为M,则△ABC的面积S△ABC=?△ABM的面积
- 设A和B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,若△ABM为Rt△,求k的值.
- 抛物线y=x²-4x+c(c>0)的图像与x轴交于点A和点B,起顶点为W,若△ABM为等腰Rt△,求c的值.
- 数学题:抛物线y=ax^2+bx+c的顶点满足下诉三个条件:1、在第三象限.2、在直线y=x上……
- 抛物线y=ax的平方+bx+c(a不等于0)的顶点为m,与x轴的焦点为A、B(点B在点A的右侧),△ABM的三个内角角M、
- he was invited to lily 's birthday party的invited 的用法是什么
- 1/20 * X + 1/12(14-X)=1
- 骆驼祥子读书笔记,800字左右,
猜你喜欢