(1)因BC对应于∠A,AB对应于∠C.
应用正弦定理得:
BC/sinA=AB/sinC
AB=BCsinC/sinA=BC2sinA/sinA=2BC
故,AB=2√5.(2) sin(2A-∏/4)=sin2Acos(∏/4)-cos2Asin(∏/4)=[(根号2)/2](sin2A-cos2A)利用余弦定理求角A: cosA=(AB^+AC^2-BC^2)/2AB*AC=[(2根号5)^2+3^2-(根号5)^2]/2*(2根号5)*3=(20+9-5)/12(根号5)故,cosA=(2根号5)/5sinA=根号[1-cos^2A]=(根号5)/5 sin(2A-∏/4)=[(根号2)/2][2sinAcosA-(2cos^2A-1)]=[(根号2)/2]{2*(根号5/5)*(2根号5/5)-[2*(2根号5/5)^2-1]}整理后得:sin(2A-∏/4)=(根号2)/10