关于函数极限的局部保号性的理解问题
定义证明中取A/2,只表示,在领域里找到了一个数使f(x)>0,即在领域里存在f(x)>0,不能证明在领域里f(x)恒大于0呀?不是恒大于和恒小于那还怎么在保号?还有当A=0时,就没有保号性了?
人气:444 ℃ 时间:2020-02-03 04:47:37
解答
不是这样的
先看保号性的证明:
先有函数f(x)在x→x0(注意:x0可以是具体数,也可以是无穷)时,存在极限A>0(A0,存在δ>0,使|x-x0|任意ε>0这个不是任意小的正数吗?如果极限A是一个很大的数呢?A/2也很大呀,那么ε还可以等于A/2吗?ε是一个任意数,其实既可以任意小,也可以任意大而在写定义的时候,我们只强调ε任意小的属性,但其实,既然已知|f(x)-A|任意小,当然这东西会小于任何一个已取定的数了,注意是已取定那么,A/2是取定的不论A有多大,都只是一个定数(不能是无穷,无穷不是数)一个已知是任意小的东西|f(x)-A|当然会小于A/2了 要注意,任意ε>0,存在δ>0,使|x-x0|<δ,有|f(x)-A|<ε…………这个是定义对于ε0=A/2,存在δ>0,使|x-x0|<δ,有|f(x)-A|<ε0=A/2…………这个不再是定义,而是一个事实千万不要混淆了,我是从定义中找出一种情况(这情况是一个事实)有不懂欢迎追问
推荐
猜你喜欢
- 一辆汽车从甲地到乙地,若每小时行60千米,要迟到6小时,每小时行80千米,提前3小时到达,甲乙两地相距多
- 五人进行羽毛球比赛.已知赵打了4场,钱打了3场,孙打了2场,张打了1场,问李打了几场
- (1-3y)(1+3y)(1+9y2)
- 直角三角形的三条边是五米四米和三米,面积是十平方米,
- Mary wants to go to the zoo with herfriends .怎样转换为同义句?
- 消防员用水扑灭了大火(put out )
- 去浓度相等的NAOH和HCl溶液,以3:2体积混合,所的溶液中c(OH-)=0.01mol\L,则原溶液的浓度是多少?
- CO2 ATP NADPH 分别指什么