已知z=a+bi是虚数,且z+1/z是实数,求证:(z-1)/(z+1)是纯虚数
..
人气:362 ℃ 时间:2019-11-24 15:00:09
解答
楼上强人
z+1/z
=a+ib+1/(a+ib)
=a+ib+(a-ib)/(a^2+b^2)
=>[a+a/(a^2+b^2)]+i[b-b/(a^2+b^2)]是实数
=>[b-b/(a^2+b^2)]=0
=>a^2+b^2=1
----------------
(z-1)/(z+1)
=(a-1+ib)/(a+1+ib)
=(a-1+ib)(a+1-ib)/(a+1+ib)(a+1-ib)
=(a^2+b^2+2ib-1)/[(a+1)^2-b^2]
实部为=(a^2+b^2-1)/[(a+1)^2-b^2]
=0/[(a+1)^2-b^2]
=0
so
(z-1)/(z+1)是纯虚数
推荐
- 已知z是虚数,且z+1/z是实数,求证:(z-1)/(z+1)是纯虚数
- 已知z是纯虚数,z+21−i是实数,那么z等于( ) A.2i B.i C.-i D.-2i
- 设z为虚数,z+1/z是实数,求证z-1/z+1为纯虚数
- 已知z=bi(b∈R)(z-2)(1+i)是实数,i是虚数单位
- 急,已知复数z=2-bi(其中b属于实数,是虚数单位),且(1+2i)为纯
- If your prices are competitive,we will place a large order with you.
- I perfer the pink dress to the green one.
- 写一份英语倡议书,号召大家节约用水
猜你喜欢