设函数f(x)满足af(x)+bf(1/x)=c/x(其中a、b、c均为常数且a≠b),则f'(x)=
a的绝对值≠b的绝对值,不小心少打了……
人气:231 ℃ 时间:2019-08-20 05:51:24
解答
af(x)+bf(1/x)=c/x ---> a^2f(x)+abf(1/x)=ac/x
以1/x代入:af(1/x)+bf(x)=cx ----> abf(1/x)+b^2f(1/x)=bcx
两式相关减:f(x)[(a^2-b^2]=ac/x-bcx
得f(x)=(ac/x-bcx)/(a^2-b^2)
因此有:f'(x)=(-ac/x^2-bc)/(a^2-b^2)
推荐
- 设f(x)满足af(x)+bf(1/x)=c/x,其中a,b,c都是常数,且|a|≠|b|,①证明f(x)为奇函数②求f'(x)和 f''(x)
- 若函数f(x)满足方程af(x)+bf(1/x)=c/x,其中a,b,c为常数,且|a|≠|b|,求f(x)的表达式并证明f(x)是奇函数.
- 设f(x)适合af(x)+bf(1/x)=c/x(a,b,c均为常数),且|a|=|b|,试证:f(-x)=-f(x)
- 已知函数f(x)满足af(x)+bf(1/x)=c/x,其中a,b,c为常数,且|a|≠|b|,求f′﹙x﹚.
- 已知函数af(x)+bf(1/x)=cx(a,b,c属于R.ab≠0,a^2≠b^2),求函数f(x)的解析式)
- operation smile怎么翻译
- 用哲学原理解释如下成语引婴投江、刻舟求剑、守株待兔、邯郸学步、南辕北辙
- 宋词改记叙文
猜你喜欢