设f(2)=1/2,f`(2)=0,∫f(x)dx=1(上限为2,下限为0),求定积分∫x^2f``(2x)dx(上限为1,下限为0)
人气:331 ℃ 时间:2020-06-03 06:04:28
解答

如果有用请及时采纳,
推荐
- 设f(2)=1/2,f`(2)=0,∫f(x)dx=1(上限为2,下限为0),求定积分∫x^2f``(2x)dx(上限为1,下限为0)
- 定积分习题 f(x)=(1-x^2)^0.5-2x∫(上限1,下限0)f(x)dx+∫(上1,下-1)f(x)dx
- 上限b下限a求f'(2x)dx的定积分
- f(a)=(2ax^2-a^2x)dx(定积分),在区间(0,1)内,求f(x)的最大值
- 定积分∫(上限为1,下线为0)f′(2x)dx=?
- 80-1.1-2.1-3.1-4.1-5.1-6.1-7.1-8.1-9.1-10.1用简便方法计算
- 一游客划着小船逆流而上,船上一只皮球掉入河里,2分钟后游客发现,立即掉头追皮球,问游客几分钟追上皮球
- 抛物线焦点到准线的距离是2p吗?
猜你喜欢