线型代数(理)设n阶实方阵A,B,C满足关系式ABC=E,其中E为n阶单位矩阵,
设n阶实方阵A,B,C满足关系式ABC=E,其中E为n阶单位矩阵,则下列关系式成立的是()
1.ACB=E.2.CBA=E.3.BAC=E.4.BCA=E.
人气:128 ℃ 时间:2020-06-02 14:48:04
解答
4正确.
ABC=E
根据结合律,得
A(BC)=E
等式两边取行列式,得
|ABC|=|E|=1
因为|ABC|=|A(BC)|=|A|*|BC|=1
所以|A|!=0
所以A可逆.
等式两边左乘A逆,右乘A,得
A逆(ABC)A=A逆*E*A
即(A逆*A)(BC)A=A逆*A
E(BC)A=E
(BC)A=E
BCA=E
推荐
猜你喜欢
- 已知X的平方-3X+2=0,求x2+X2分之1的值
- 某人骑自行车上学,若速度为15km/h,则早到15min,若速度为9km/h,则迟到15min,先打算提前10min到达,自行车的速度应为多少?
- 读书不觉已春深 下一句 求
- 在10%的利率下,一元三期的复利现值系数分别是0.9091,0.8264,0.7513,则三年期的年金现值系数是?
- There is a library in our school对a提问
- mghco3和mgco3的溶解度大小比较?
- 筷子是一个杠杆,那么它的支点在哪里?说理由
- 三角形三边之和为10,其夹角的余弦是方程2X^2-3X-2=0的根······