设f(x)在[a,b]上存在二阶导数,f(a)>0,f(b)>0,∫a到b f(x)dx=0,证明存在ζ∈(a,b),使f``(ζ)>0
人气:166 ℃ 时间:2019-09-09 17:39:41
解答
我给你分析分析哈,就不规范写过程了.
,∫a到b f(x)dx=0 那就是说(a,b)上函数和x轴围成的面积总和为0 .又因为f(a)和f(b)都大于零的,那么中间肯定存在一个c点小于零嘛,且我们设c为最小值~
由罗尔定理,f'(c)=0
由拉格朗日中值定理,在(c,b)上,存在一个d使得[f(b)-f(c)]/(b-c)=f'(d)>0
上面都没问题吧?
再由拉格朗日中值定理,在(c,d)上,存在一个ζ使得[f'(d)-f'(c)]/(d-c)=f``(ζ)>0
推荐
- f(x)在[0,1]上连续,(0.1)内可导,f(0)=3∫(2/3~4)f(x)dx,证明在(0,1)内c存在,f(c)导数=0
- 设函数f在[1]上存在二阶连续导数,且满足f(0)=f(1)=0,证明∫(1,0)f(x)dx=1/2∫(1,0)x(x-1)f"(x)dx
- 如果f(x)为偶函数,且f(0)的导数存在,证明f(x)在x=0处的导数=0
- 设f(x)在[1.2]具有2阶导数.且f(2)=f(1)=0,如果F(X)=(X-1)f(1),试证明至少存在一点*(1.2),使的F^^(*)=0
- 设函数f(x)在[0,1]上具有连续导数,且f(0)+f(1)=0,证明:|∫ f(x)dx|≤1÷2×∫ |f’ (x) |dx
- 请问一个英文单词 它的拼读是这样的 ai ke che li 艾克撤里
- 文言文:赵简子元日放生(回答问题)
- 已知一个长方形的面积是6m2+60m+150(m>0),长与宽的比是3:2,求:这个长方形的周长.
猜你喜欢