已知椭圆x^2/4+y^2=1的焦点为F1、F2,点M在椭圆上,且向量MF1*MF2=0,则点M到Y轴的距离为?
人气:292 ℃ 时间:2019-08-18 10:40:21
解答
∵MF1·MF2 =0,则MF1⊥MF2则M在以|F1F2|为直径的圆周上,∴⊙O半径为√3,(∵c=√3)∴⊙O方程为x²+y²=3===>y²=3-x²代入椭圆方程得:x²+4(3-x²)=4===>3x²=8===>x=±2√6/3∴点M到Y...
推荐
- 已知F1,F2是椭圆的两个焦点,满足向量MF1*MF2=0的点总在椭圆内部,则该椭圆离心率的范围是?
- 已知F1,F2是椭圆焦点,满足向量MF1·MF2=0的点M总在椭圆内部,则椭圆离心率范围是?
- 已知双曲线x^2-y^2/2=1的焦点为F1,F2,点M在双曲线上,且向量MF1*MF2=0,则点M到x轴的距离为
- 已知F1 F2是椭圆的两个焦点,满足向量MF1×向量MF2=0的点总在椭圆内部,求椭圆离心率的取值范围.
- 椭圆x^2/m+1+y^2=1的两个焦点为F1(-c,0)F2(c,0)且椭圆上存在点M使向量MF1*MF2=0
- fe(oh)2在空气中加热,所生成的产物是
- 实验中测得氮气的体积分数低于21%造成此误差的可能原因是什么
- 若单项式2x²y³/3的系数是m,次数是n,则m+n的值是( )
猜你喜欢