椭圆x ^ 2/16+y ^ 2/4=1上有两点P,Q,O为坐标原点,连结OP,OQ,若Kop*kOQ=-1/4,
1、求椭圆的参数方程
3、求线段PQ中点M的轨迹方程
人气:122 ℃ 时间:2020-03-25 16:21:54
解答
参数方程为:x=4cost,y=2sint(t为参数)
设直线PQ方程为:y=kx+m,交点(x1,y1)(x2,y2)
联立,则:(1+4k^2)x^2+8kmx+4m^2-16=0
kop*koq=-1/4=y1y2/x1x2=(kx1+m)(kx2+m)/x1x2
4[k^2x1x2+km(x1+x2)+m^2]+x1x2=0
代入韦达定理,则m^2=2+8k^2
中点(-4km/(1+4k^2),k*(-4km/(1+4k^2))+m)
由关系式,消参,得到中点坐标的关系即为轨迹方程.
我现在有事,等忙完了再消参,你也可以自己消一下.
推荐
- 椭圆X^2/16+Y^2/4=1上有两点P、Q,O是原点,若OP、OQ斜率之积为-1/4,求证|OP|^2+|OQ|^2为定值.
- 已知椭圆x^2/2+y^2=1,椭圆上有两点P.Q,O为原点,且有直线OP.OQ的斜率满足Kop*Koq=-1/2求线段PQ中点M轨迹
- 已知椭圆O为坐标原点,P、Q为椭圆上两动点,且op与OQ垂直,求证1/op^2+1/oq^2=1/a^2+1/b^2
- 已知椭圆x^2 /16 + y^2 /4 = 1 上有两个定点P,Q,O为原点,连结OP,OQ
- 椭圆X^2/a^2+y^2/b^2=1(a>b>0)与直线x+y=1交与P,Q两点且OP垂直于OQ,其中O为坐标原点
- watch(第三人称单数)( )
- 流星拖着一条发光的尾巴是什么能转化什么能
- 聿可以加什么偏旁
猜你喜欢