已知函数f(x)=alnx-(x-1)²-ax(常数a∈R).求函数f(x)的单调区间
人气:434 ℃ 时间:2019-08-31 16:31:34
解答
由f'(x)=a/x-2(x-1)-a=-[2x^2-2x+ax-a]/x=-(2x+a)(x-1)/x=0,得:x=-a/2,1
定义域为x>0
讨论a:
1)若a>=0,则函数只有一个极值点x=1.当x>1时,f'(x)
推荐
猜你喜欢
- it's fun to visit such a wonderful place(改为同义句) _ such a wonderful place is _.
- 用C语言(C99) 验证哥德巴赫猜想:一个不小于6的偶数必定能表示为两个素数之和.
- 澳大利亚出口的两种主要矿产的分布特点
- 三角形abc的三个顶点都在圆o上,d,e分别是弧ab,弧ac中点,弦de交ab于点f,交ac于点g,求证:af×ag=df×eg
- 在一场篮球比赛中,小姚叔叔投中x个3分球,比2分球少5个,x+5表示( ),2(x+5)表示( ),3x+2(X+5)表示
- 请不要忘记明天给我打电话怎么说?英语的
- 有关描写风景的片段100字到200字
- 已知 向量a=(1,-1),向量b=(λ,1),若向量a与向量b夹角Θ为钝角,求λ取值范围