函数f(x)=[log2(x)-1]/[log2(x)+1],若f(x1)+f(2x2)=1(其中x1、x2均大于2),则f(x1x2)的最小值为______
函数f(x)=[log2(x)-1]/[log2(x)+1],若f(x1)+f(2x2)=1(其中x1、x2均大于2),则f(x1x2)的最小值为( )
A、3/5 B、2/3 C、4/5 D、(5-根号5)/4
人气:347 ℃ 时间:2019-08-20 03:51:46
解答
函数化为f(x)=1-2/(1+log2(x))1-f(X)=1/(1+log2(x))1-f(x1)=1/(1+log2(x1)).(1)f(x1)+f(2x2)=11-f(X1)=f(2*x2).(2)(1)(2):1/(1+log2(X1))=[1-log2(2x2)]/[1+log2(2x2)]1+log2(2x2)=log2(x1)*log2(2x2)-log2...答案是:B,可以分析一下吗?谢谢!f(x)=1-2/(log2(x)+1)=1-2/log2(2x)log2(2x)=2/(1-f(x))log(x)=2/(1-f(x))-1因为 f(x1)+f(2x2)=1,所以log(x1)=2/(1-f(x1))-1=2/f(2x2)-1log(2x2)=2/(1-f(2x2))-1=2/f(x1)-1log2(x1)+log2(2x2)=2(f(x1)+f(2x2))/(f(x1)f(2x2))-2=2(1-f(x1)f(2x2))/f(x1)f(2x2)f(x1*x2)=1-2/log2(2x1*x2)=1-2/(log2(x1)+log2(2x2))=1-f(x1)f(2x2)/(1-f(x1)f(2x2))=2-1/(1-f(x1)f(2x2))因为 x1、x2>2所以 f(x1)=1-2/log2(2x)>1-2/2=0f(2x2)=1-2/log(4x2)>1-2/3=1/3所以 f(x1)f(2x2)=<((f(x1)+f(2x2))/2)^2=1/4所以 f(x1*x2)>=2-1/(1-1/4)=2/3"log(x)=2/(1-f(x))-1"这式子是以什么为底的呢?1-f(x) [2/(1-f(x))]-1
推荐
- 函数f(x)=(log2(x)-1)/(log2(x)+1),若f(x1)+f(2x2)=1 (其中x1、x2均大于2),则f(x1*x2)的最小值为?
- 函数f(X)=(log2X—1)/(log2X+1),若f(X1)+f(X2)=1(其中X1、X2均大于2),则f(X1X2)的最小值
- 函数f(x)=(log2(x)-1)/(log2(x)+1),若f(x1)+f(2*x2)=1 (其中x1、x2均大于2),则f(x1*x2)的最小值为?
- 函数f(x)满足Inx=1+f(x)/1-f(x),且x1,x2均大于e,f(x1)+f(x2)=1,则f(x1x2)的最小值
- (x)=(log2x-1)/log2x+1),若 f(x1)+f(2x2)=1,其中x1,x2均大于2,则f(x1x2)最小值为?
- 【例题】y=(3x-1)/(x+2)的图像关于_____对称.用分离常数的方法 y=3-7/(x+2) 然后就是令x+2=0 ,得x=-2,7/(x+2)显然不为零,所以3-7/(x+2) 不为3,y=3所以对称点就是(-2,3)因此关于中
- 关于汶川大地震,你知道些什么?感受最深的是什么?
- 已知数轴上有A、B、C三个点,分别表示有理数-24,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒. (1)用含t的代数式表示P到点A和点C的距离: PA=_,PC=_; (2
猜你喜欢