关于数学向量练习题,要解析!
设O为空间任意一点,点G是△ABC的重心,设向量OA=向量a,向量OB=向量b,向量OC=向量c,则向量OG=___________
人气:361 ℃ 时间:2020-05-19 23:10:55
解答
重心是△三条中线交点,在中线的2/3处.向量BC+向量BA=3向量BG
向量OG=向量OB+向量BG=向量b+(1/3)(向量BC+向量BA)=向量b+(1/3)(向量c-向量b+向量a-向量b)=(1/3)(向量a+向量b+向量c)
推荐
- 已知点A(6,-4),B(1,2)、C(x,y),O为坐标原点.若OC=OA+λOB(λ∈R),则点C的轨迹方程是( ) A.2x-y+16=0 B.2x-y-16=0 C.x-y+10=0 D.x-y-10=0
- 在三角形ABC中,M,N,P分别是AB,BC,CA边上的靠近A,B,C的三等分点,O是三角形ABC平面上的任意一点.若OA+OB+OC=e1/3-e2/2,则M+ON+OP=?
- 在平面直角坐标系中,O为坐标原点,已知向量a=(-1,2),点A(1,0),B(cosθ,t)
- 平面四边形ABCD满足AB+CD=0,(AB-AD)*AC=0,则该四边形是
- 塔里木河和黄河各有什么特点
- 亡羊补牢这则寓言故事告诉我们什么道理?
- 初一第三课课文 短文两篇(蝉 .贝壳)
- 踏破铁鞋无觅处 得来全不费工夫
猜你喜欢