近世代数: 半群和群的本质区别在哪里,应用方面有什么不同?
如题,谢谢!
人气:177 ℃ 时间:2019-08-20 21:43:01
解答
半群的本质就是一个集合对上面的2元运算满足结合律(说白了就是封闭+结合);
而群不仅有结合律,还要求含幺+每个元有逆,定义的条件要强得多了~
任何群都是半群,但任何半群都可以(同构的角度上来说是唯一的)“嵌入”到一个对应的群里面.
群的应用到处都是,代数中,几何中,拓扑中,函数论中,应用数学包括物理中,.太多了
而半群的正式研究比其他起步于十九世纪中期的代数结构如群或环要晚一些.,开始于二十世纪早期.自从1950年代,有限半群的研究在理论计算机科学中变得特别重要,因为在有限半群和有限自动机之间有自然的联系.有限半群理论比它的无限对应者要更加发达.这特别根源于语法半群概念,和继而在半群的伪品种和已经被证明在自动机理论中特别多产的所谓的形式语言品种之间的联系.
话说大四毕业论文做的是一种叫“幂群”的新生品种,据说来源为了给人工智能的某方面弄的数学理论基础;而研究幂群与序结构的联系的时候G的含幺子半群与正规子半群就起到了重要的作用...
推荐
- 群与环有何异同点?至少分别三点!急阿!
- 近世代数的"域"和"环"的本质区别,能否举具体例子?
- 近世代数证明题:满足左、右消去律的有限半群必是群
- 怎样理解近世代数中群的概念
- 近世代数 半群
- V.Complete the dialogue.补全对话.(10分)答案写在后面横线上.
- 一个没有盖的圆柱形铁皮水桶,高是12米,底面直径是高的四分之三.做这个水桶大约用铁皮多少平方分米?(用进一法取近似数值,得数保留整十数平方分米.)
- 1.已知三角形ABC中,AB,BC,CA,边上的中点分别为F(3,-2),D(5,4),E(-1,-8),求BC边上中线AD的长.
猜你喜欢
- 某人站在高楼的平台边缘,
- 7.已知整型变量a=3,b=4,c=5,写出逻辑表达式a
- 若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有( ) A.7个 B.8个 C.9个 D.10个
- 把一根长1米的长方体材料平均截成4段后,表面积增加了36平方厘米,原来这根木料的体积是多少?
- 虎,牛,完,元.多一笔或少一笔是什么字?
- 为什么摇晃瓶子后,里面的液体会产生气泡?
- 天上的街市属于联想的句子有?