毛病出在你没有用等价无穷小量去代换,所以积分(也就是取极限)后结论不对.
可以先拿曲线的弧长做例子,在计算曲线长度时要用内接折线段来逼近,也就是说在小区间[x,x+dx]上要用折线段(x,f(x))--(x+dx,f(x+dx))来代替曲线段,而不能直接用dx,因为这不是局部的曲线段长度的等价无穷小量.
当然曲面的情况要比曲线复杂,曲面面积甚至不能用内接多面体的面积来逼近,不过至少来说拿圆柱去逼近圆锥侧面就像直接用直角三角形的直角边去逼近斜边一样,不是等价无穷小代换.对于圆的表面积而言,可以对切片用圆台的侧面积去近似,对于旋转体而言这样是安全的.
对于一般的简单曲面就不要乱来了,老老实实按定义去做,除非你掌握了我所说的要点,做的代换都是等价量的代换.