令f′(x)=0,得x=k-1,
f′(x)f(x)随x的变化情况如下:
x | (-∞,k-1) | k-1 | (k-1,+∞) |
f′(x) | - | 0 | + |
f(x) | ↓ | -ek-1 | ↑ |
(Ⅱ)当k-1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,
∴f(x)在区间[0,1]上的最小值为f(0)=-k;
当0<k-1<1,即1<k<2时,由(I)知,f(x)在区间[0,k-1]上单调递减,f(x)在区间(k-1,1]上单调递增,
∴f(x)在区间[0,1]上的最小值为f(k-1)=-ek-1;
当k-1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,
∴f(x)在区间[0,1]上的最小值为f(1)=(1-k)e;
综上所述f(x)min=
|