已知函数f(x)=x²+bx+2.若当x∈[-1,4]时,f(x)≥b+3恒成立,求f(x)
人气:273 ℃ 时间:2020-09-30 23:05:56
解答
f(x)=x²-2x+2 (b=-2)
用分类讨论对称轴的思想来看最小值的分布,并且与所给的条件作比较,最后得出b的值
f(x)=x²+bx+2=f(x)=(x+b/2)²+2-b²/4
此二次函数开口向上,对称轴为x=-b/2,顶点为(-b/2,2-b²/4)
1、若对称轴小于等于-1
-b/2≤-1 (即b≥2)时,
f(x)最小值为f(-1),
必须有f(-1)=1-b+2≥b+3,得到b≤0 (不符,舍弃)
2、若对称轴在区间[-1,4]内,(-8
推荐
- 已知函数y=x²+bx-1的图像经过点【3,2】 ,【1】求这个函数的解析式 【2】当x大于0 ,求使y≥2的x取值范围
- 已知函数f(x)=x²+bx(b∈R)若|f(x)|≤1在区间(0,1]恒成立,则b的取值范围是
- 已知函数f(x)=x2+bx+c(b、c∈R)且当x≤1时,f(x)≥0,当1≤x≤3时,f(x)≤0恒成立. (1)求b、c之间的关系式; (2)当c≥3时,是否存在实数m使得g(x)=f(x)-m2x在区间(0,+∞)上
- 已知函数f(x)=x²+bx+c,g(x)=2x+b,对任意的x∈R,恒有g(x)≤f(x)
- 已知函数f(x)=ax²+bx+c的图像过原点,对于任意x∈R,恒有f(x-1)=f(x+1)成立,且方程f(x)=x有两个相等的实根 .求f(x)的解析式.
- 微观经济学价格领导模型问题
- 如图,OC是∠AOB的角平分线,P是OC上一点.PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF.求证:DF=EF.
- 0到9 取5位数字的排列 即00000-99999 共十万个 请问如何用数学算法(排列组合)计算出?
猜你喜欢