高数极坐标面积的题目
过抛物线y2=4ax焦点(a,0)作一弦,与抛物线所围面积最小.
解法是设弦为 x=a+p cos,y=p sin
代入抛物线得p=2a/(1-cos)
这是为什么呀,怎么算出来的,我算了半天没做出来
人气:336 ℃ 时间:2020-05-19 11:23:23
解答
建议你把它们一起逆时针转90° 转换为求
过x^2=4ay焦点 (0,a)作 一弦,与抛物线所围面积最小.
化为一个梯形面积减掉一个简单的积分
推荐
猜你喜欢
- it's fun to visit such a wonderful place(改为同义句) _ such a wonderful place is _.
- 用C语言(C99) 验证哥德巴赫猜想:一个不小于6的偶数必定能表示为两个素数之和.
- 澳大利亚出口的两种主要矿产的分布特点
- 三角形abc的三个顶点都在圆o上,d,e分别是弧ab,弧ac中点,弦de交ab于点f,交ac于点g,求证:af×ag=df×eg
- 在一场篮球比赛中,小姚叔叔投中x个3分球,比2分球少5个,x+5表示( ),2(x+5)表示( ),3x+2(X+5)表示
- 请不要忘记明天给我打电话怎么说?英语的
- 有关描写风景的片段100字到200字
- 已知 向量a=(1,-1),向量b=(λ,1),若向量a与向量b夹角Θ为钝角,求λ取值范围