设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,那么在函数值f(-1)、f(0)、f(2)、f(5)中,最小的一个不可能是( )
A. f(5)
B. f(2)
C. f(-1)
D. f(1)
人气:231 ℃ 时间:2020-04-04 14:40:19
解答
∵函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,∴二次函数f(x)的图象关于直线x=2对称,显然,直线x=2离对称轴最近,直线x=-1离对称轴最远,而直线x=1离对称轴既不最近、也不最远,故函数...
推荐
猜你喜欢
- zhao wei and zhou xun are very s - actresses.
- 有一组数:5,10,15,20,25,30你发现了什么规律,用含有字母式子表示
- 证明自己是清白的诗
- 计算:3/4a四次方b七次方c五次方*(1/2ab三次方)*(-3bc二次方)平方
- 解方程组2x+4y+3z=9, ①3x−2y+5z=11, ②5x−6y+7z=13. ③.
- 氧化铜和碳反应在什么情况下生成CO?
- 已知点A(2-p,3+q),先将其沿x轴负方向平移3个单位长度,再沿y轴负方向平移2个单位长度,得到B(p,﹣q)
- 把128厘米的铁丝围成一个长方形,要求长比宽多18厘米.求长方形面积?