>
数学
>
已知二次函数f(x)=ax
2
+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有
f(x)≥0,则
f(1)
f′(0)
的最小值为( )
A. 2
B.
5
2
C. 3
D.
3
2
人气:306 ℃ 时间:2019-08-18 01:56:28
解答
∵f(x)≥0,知
a>0
△=
b
2
−4ac≤0
,∴c
≥
b
2
4a
.
又f′(x)=2ax+b,
∴f′(0)=b>0,f(1)=a+b+c.
∴
f(1)
f
′
(0)
=1+
a+c
b
≥1+
a+
b
2
4a
b
=
1+
4
a
2
+
b
2
4ab
≥1+
2
4
a
2
b
2
4ab
=2.
当且仅当4a
2
=b
2
时,“=”成立.
故选A.
推荐
已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为( ) A.2 B.52 C.3 D.32
已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为( ) A.2 B.52 C.3 D.32
已知二次函数f(x)=ax^2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤(1/8)(x+2)^2成立
已知二次函数f(x)=ax^2+bx+c(a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,
已知二次函数f(x)=ax2+bx+c的导数为f′(x),f′(0)>0,对于任意实数x,有f(x)≥0,则f(1)f′(0)的最小值为( ) A.2 B.52 C.3 D.32
两个底面半径相等的圆锥和圆柱,它们的体积比是1比4,已知圆柱的高是8厘米,那么
白光 黄光 蓝光 那种光线透水性好
仓库里有30吨粮食,第一次运走总数的30%,第二次运走2分之1吨,还剩下多少吨粮食?
猜你喜欢
若 f(x)=-x2+2ax 与g(x)=ax+1 在区间[1,2]上都是减函数,则a的取值范围是( ) A.(-1,0)∪(0,1) B.(-1,0)∪(0,1] C.(0,1] D.(0,1)
三小时二十分等于几分之几小时?
如果用a 表示自然数,那么2a一定是偶数._.
they have eggplant and fish for lunch today.这句话转化成特殊疑问句是什么
春天开的有香气的花有哪些?
已知a-b=根号5+根号3,b-c等于根号5-根号三,求a方+b方+c方-ab-bc-ca的值
炊烟是什么阅读理解
英语论文的提纲怎样写啊?与Chinese and English Idioms有关
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版