∵四边形ABCD是矩形,
∴AD=BC=10cm,CD=AB=8cm,
根据题意得:Rt△ADE≌Rt△AFE,
∴∠AFE=90°,AF=10cm,EF=DE,
设CE=xcm,则DE=EF=CD-CE=8-x,
在Rt△ABF中由勾股定理得:AB2+BF2=AF2,
即82+BF2=102,
∴BF=6cm,
∴CF=BC-BF=10-6=4(cm),
在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,
即(8-x)2=x2+42,
∴64-16x+x2=x2+16,
∴x=3(cm),
即CE=3cm.